A Few Reductions Between Decisional Problems CFAIL Abstract We state three decisional problems in prime order groups and give some reductions between them. Can you find the line that's wrong? 1 The Problems Let G be a group of prime order p, generated by q. All lower case letters will represent values chosen uniformly and independently at random from \mathbb{Z}_p . **Problem 1** Given g, g^a, g^b , distinguish $T = g^{ab}$ from $T = g^r$. **Problem 2** Given g, g^{a^2}, g^b , distinguish $T = g^{a^{2b}}$ from $T = g^r$. **Problem 3** Given g, g^a, g^b, g^c, g^{ac} , distinguish $T = g^{ab}$ from $T = g^r$. The Reductions $\mathbf{2}$ **Theorem 1.** Given a PPT algorithm \mathcal{A}' that achieves non-negligible advantage in Problem 1, we can build a PPT algorithm \mathcal{A} that achieves non-negligible advantage in Problem 2. *Proof.* We define \mathcal{A} as follows. \mathcal{A} receives input g, g^{a^2} , g^b , and T. It samples c itself, uniformly at random from \mathbb{Z}_p . It implicitly sets $a' = a^2 c$. It can then efficiently compute $g^{a'} = (g^{a^2})^c$ and T^c . It sends $g, g^{a'}, g^b, T^c$ to \mathcal{A}' and copies its answer. The advantage of \mathcal{A} is negligibly close to the advantage of \mathcal{A} . **Theorem 2.** Given a PPT algorithm \mathcal{A}' that achieves non-negligible advantage in Problem 2, we can build a PPT algorithm \mathcal{A} that achieves non-negligible advantage in Problem 1. *Proof.* We define \mathcal{A} as follows. \mathcal{A} receives input g, g^a, g^b , and T. It sends these inputs to \mathcal{A}' and copies its answer. When a is a square, this matches the input distribution of Problem 2. The value a is square in \mathbb{Z}_p with probability at least $\frac{1}{2}$, as half of the non-zero elements of \mathbb{Z}_p are squares. The advantage of \mathcal{A} is thus at least $\frac{1}{2}$ the advantage of \mathcal{A}' , and hence non-negligible. **Theorem 3.** Given a PPT algorithm \mathcal{A}' that achieves non-negligible advantage in Problem 3, we can build a PPT algorithm \mathcal{A} that achieves non-negligible advantage in Problem 1. *Proof.* We define \mathcal{A} as follows. \mathcal{A} receives input g, g^a, g^b , and T. It samples c itself, uniformly at random from \mathbb{Z}_p . It can then efficiently compute g^c and $g^{ac} = (g^a)^c$. It sends $g, g^a, g^b, g^c, g^{ac}, T$ to \mathcal{A}' and copies its answer. The advantage of \mathcal{A} is identical to the advantage of \mathcal{A}' .

1

2

3

5

7

8

9

10

11

12

13

14

15 16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

1