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Abstract

This work asks if the passive protocol of Ben-Or, Goldwasser, and Widgerson
(STOC 1988) can be adapted for low communication locality. The core of the de-
sign is replacing the high degree initial secret sharing with a tree of constant degree
sharings. This revised protocol can be adapted for correctness. The core question of
the manuscript is whether the revised degree reduction protocol is secure for a constant
fraction of malicious participants.

1 Low-locality through repeated secret sharing?

One of the emerging questions in MPC is the required communication graph between par-
ties. The recent work of Boyle et al. [BCDH18] showed that in many natural circumstances
the graph must be an expander. We work in the following model:

1. There is a single party P ∗ who seeks to have parties P1, ..., Pn perform a private
computation. This party can send a single distribution message to all parties and
receive a single reconstruction message from all parties.

2. We seek information theoretic security.

3. We assume a passive, static adversary that sees the view of at most a constant fraction
of parties.

4. We assume that the communication graph between P1, ..., Pn can be reconfigured on
the fly and that the complete graph is available for communication.
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The core question of this paper is whether the traditional BGW [BOGW88] protocol can
be adapted for low communication locality. We consider the passive protocol that uses
Shamir secret sharing [Sha79] (secret sharing using fixed degree polynomials). We propose
a modification to this protocol we call levelled secret sharing that we have not been able
to show secure or insecure. The idea is as follows:

1. Rather than distributing a secret s among n parties by setting it as the zero of a
degree t = Θ(n) polynomial, the initiating party P ∗ initiates a tree of sharings.
Namely, P ∗ first sets s as the zero of a random constant degree polynomial, with a
constant number of shares. For example, with constant degree 1 and 3 shares, P ∗

creates the shares 〈s〉1, 〈s〉2, 〈s〉3. It then shares of each of those shares, so 〈s〉i would
be the zero of a line with shares 〈〈s〉i〉1, 〈〈s〉i〉2, 〈〈s〉i〉3. It repeats this process log(n)
times until there are n shares at the lowest level of sharing. Each party receives
exactly one of the lowest-level shares. An example with n = 9 parties and two levels
is shown in Figure 1. Throughout this process the assignment of lowest-level shares
to the n parties is entirely random but published to the parties following adversary
choice of corruptions. (Alternatively, we can think of an adversary corrupting random
parties.)

2. These n shares are distributed to the n computing parties.

3. Addition proceeds without communication, as in the original BGW protocol.

4. Multiplication uses the simplified degree reduction protocol for BGW designed by
Gennaro, Rabin, and Rabin [GRR98], however, each level of polynomials is individ-
ually reduced. The key idea is that this should require each party to communicate
with 3 log(n) parties (3 parties for each level of degree reduction).

5. At the end of the computation, the final shares are returned to P ∗.

We can show this protocol is correct and that the initial sharing is secure. However, we
have been unable to show that the modified degree reduction protocol preserves security.
The majority of this manuscript is connecting this modified degree reduction protocol to
a matrix problem that we have been unable to solve.

2 Review of the BGW Protocol

In the original protocol BGW protocol [BOGW88], there are n parties, P1, . . . , Pn, each of
whom holds a secret value s1, . . . , sn. Their goal is to run a protocol that jointly computes
an arithmetic circuit f (over Zq) on their secret values while still keeping their input values
secret.
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Figure 1: Two level sharing of initial secret.

To differentiate what can be learned from the function being computed versus what the
protocol itself leaks, the security definition uses the real/ideal paradigm. Suppose we live
in an ideal world, and there is a trusted party T to whom each Pi can send its si. T simply
computes f(s1, . . . , sn) by itself and broadcasts the result to all parties. In the real world,
of course, there is no trusted T . We consider a protocol secure if no party learns more in
the real world than he would in the ideal world.

Adversary We assume that some subset of the parties are adversarial. For the purposes
of this document, we are considering a fairly weak adversarial model, that perhaps we
can strengthen in the future. Specifically, we are in the threshold model with a static,
semi-honest adversary.

• semi-honest: The adversary does not maliciously change the messages sent or stop
messages from being delivered. He simply observes the protocol and attempts to
learn secrets he should not know. A decent analogy is that each party is a separate
computer in a network, and the adversary has successfully gotten some spyware
installed on a fraction of the machines. The spyware doesn’t change how the machines
behave, but it does log all of their behavior and report it all back to the adversary.

• threshold: We assume that there is a single adversary who controls up to a constant
fraction of the parties. (Say, for concreteness, 1/6 of the parties.) In our spyware
analogy, this means that even if the adversary can see the logs of 1/6 of all the
machines in the network, he still can’t learn anything about the honest parties’
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secrets.

• static: The adversary cannot adaptively choose who to corrupt. Intuitively, an adap-
tive adversary could figure out who the “key players” in a protocol are by observing
the protocol for a while, and then specifically decide to corrupt those people in order
to do more damage. In our model, the adversary has to decide who to corrupt before
the protocol begins. In fact, in our protocol, no party gets its role assigned until after
corruptions have taken place, so an adversary’s best strategy is to randomly corrupt
1/6 of the parties.

2.1 How the protocol works

In the BGW protocol there are three major steps:

1. First, each party Pi “shares” its value si in a secure way so that each other party Pj

has a share of Pi’s secret. We denote this 〈si〉j .

2. Each party locally computes the circuit (arithmetic addition and multiplication gates)
on the shares of the secrets, communicating with others only when something cannot
be done locally.

3. Finally, the parties broadcast their share of the final answer to everyone else, and
each party locally reconstructs the answer from the shares he has seen.

Secret Sharing The BGW protocol uses Shamir secret sharing [Sha81], which works as
follows: Party Pi shares a secret si ∈ Zq by choosing ai1, ai2, . . . , ait uniformly at random
in Zq, and setting fi(x) = si + ai1x + ai2x

2 + . . . + aitx
t. For each j 6= i, he sends fi(j)

(which we denote 〈si〉j) to party Pj . This sharing method relies heavily on the fact that
any t + 1 points uniquely define a degree t polynomial.
Lemma 1 (Lagrange Interpolation). Given a polynomial f(x) with degree at most t, and
t + 1 points on that polynomial (x1, f(x1)), (x2, f(x2)), . . . (xt+1, f(xt+1)) the coefficients
for that polynomial can be derived via the following expression:

f(x) =

t+1∑
j=1

f(xj)`j(x)

where

`j =

∏
i 6=j(x− xi)∏
i 6=j(xj − xi)

The polynomials `j are called the fundamental Lagrange polynomials.
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So, for any set of parties Q ⊆ {P1, . . . , Pn} such that |Q| ≥ t+1, to learn a secret si = fi(0),
the parties in Q simply send their shares to each other and compute

∑
Pj∈Q

〈si〉j`j(0)

If, on the other hand, the adversary A controls some set of parties QA such that |QA| ≤ t,
even when A knows fi(j) for each Pj ∈ QA, there are many possible different polynomials
f ′(x) where f ′(j) = fi(j) for pj ∈ QA. Call this set of polynomials F . Because the
coefficients of fi were chosen uniformly at random, we can show that the value f ′(0)
for randomly chosen f ′ ∈ F is uniformly distributed over Zq, so the secret si is totally
hidden.

Addition Addition is really simple. For party Pj to get a share of s1 + s2, he simply
locally computes 〈s1〉j+〈s2〉j . This gives him the value f1(j)+f2(j). If we define fsum(x) =
f1(x) + f2(x), then Pj now has a share on fsum(x), a degree t polynomial with uniformly
distributed coefficients whose zero is s1 + s2.

Multiplication Multiplication cannot be done locally in the same way. If Pj wanted
to obtain a share of s1 × s2, he could locally compute 〈s1〉j × 〈s2〉j , which would give
him a share on the polynomial fprod(x) = f1(x) × f2(x), and in fact fprod(0) = s1 × s2.
However, fprod will be of degree 2t instead of t, meaning it will take twice as many parties
to recover the secret. Note that each multiplication would further grow the degree of the
underlying polynomial. The degree could quickly grow larger than the total number of
parties, making the secret unrecoverable. Furthermore, the coefficients of fprod are not
uniformly distributed, which is important for proving that from the point of view of the
adversary, every secret value is equally likely.

The solution is to run a protocol that simultaneously re-randomizes coefficients and reduces
degree1. This protocol will, for all j, change 〈s1×s2〉j from fprod(j), a point on a degree 2t
polynomial, to g(j), a point on a new, random, degree t polynomial such that fprod(0) =
g(0). In the following, `j(0) refers to the fundamental Lagrange polynomial described in
Lemma 1, evaluated at 0. The protocol proceeds as follows:

Degree Reduction[GRR98] For i = 1, . . . n

1In the original BGW paper, the parties first run a re-randomization protocol and then perform degree
reduction. We present the modified protocol described by Gennaro, Rabin, and Rabin that combines
re-randomization and degree reduction into a single step.[GRR98]
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• Pi generates a new random, degree t polynomial gi(x) such that gi(0) = fprod(i), and
all other coefficients are chosen uniformly at random from Zq.

• For j = 1, . . . , n, Pi sends gi(j) to Pj , and receives gj(i) from Pj .

• Pi computes
∑n

j=1 `j(0)gj(i).

If we define g(x) =
∑n

j=1 `j(0)gj(x), then clearly for all i, Pi has the share g(i). Fur-
thermore, since g(x) is a linear combination of random degree t polynomials, it is itself a
random degree t polynomial. Finally,

g(0) =
n∑

j=1

`j(0)gj(0) =
n∑

j=1

`j(0)fprod(j) = fprod(0)

3 Our Protocol - Two Levels

You can think of our protocol as basically a “leveled” extension of the BGW protocol. As
a toy example, suppose we have 9 parties, and instead of labeling them P1, . . . , P9, we label
them Pi,j for i, j ∈ {1, 2, 3}.

To share a secret s, first choose a linear f(x) = ax + s, and then for i = 1, 2, 3, choose
fi(y) = aiy + f(i), where all the a coefficients are chosen at random. Each party Pi,j gets
the share 〈s〉i,j = fi(j).

3.1 Addition and Multiplication

Figure 2 shows example sharing structures of two separate secrets s1 and s2, where we
describe the sharing structure of s1 using f(x) s.t. f(0) = s1, and fi(y) s.t. fi(0) = f(i),
for i = 1, 2, 3, and similarly describe the sharing structure of s2 using g(x) s.t. g(0) = s2
and three gi(y) s.t. gi(0) = g(i), for i = 1, 2, 3. Each party Pi,j has a share 〈s1〉i,j = fi(j)
and 〈s2〉i,j = gi(j). To add, just as in the original BGW protocol, each party Pi,j simply
computes

〈s1 + s2〉i,j = 〈s1〉i,j + 〈s2〉i,j

To multiply, each party Pi,j computes

〈s1 · s2〉i,j = 〈s1〉i,j · 〈s2〉i,j

and then participates in a degree reduction protocol. It is this degree reduction protocol
that gives us lower communication locality.
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Figure 2: Leveled secret sharings of the secrets s1 and s2

3.2 Degree Reduction

After each party has multiplied its two shares together, the sharing structure consists
of a quadratic f · g(x) = f(x) · g(x) such that f · g(0) = s1 · s2, and three quadratics
fi · gi(y) = fi(y) · gi(y) such that fi · gi(0) = f · g(i).

Note, however, that for a fixed j, the points f1 ·g1(j), f2 ·g2(j) and f3 ·g3(j) also implicitly
define a quadratic equation. Call this equation h′j(x). Furthermore, denoting h′j(0) = zj
for each j, the three points z1, z2, and z3 implicitly define a quadratic we’ll call h′(y), and
it can be shown that h′(0) = s1 · s2. This relationship between the implicit and explicit
polynomials is illustrated in Figure 3. Now, rather than communicating with all of the
parties,

1. First, the parties perform BGW degree reduction (described in section 2.1) with the
parties they share a j coordinate with. More specifically, Pi,j runs BGW degree
reduction with the parties Pi′,j for i′ = 1, 2, 3, replacing the implicit quadratic h′j(x)
with a linear hj(x), such that hj(0) = h′j(0). For j = 1, 2, 3, letting `j(0) denote the
Lagrange coefficient from Lemma 1, we define the linear equation

h(x) =
3∑

j=1

`j(0)hj(x)

This is illustrated in Figure 4.

2. Next, noting that for i = 1, 2, 3, the values h1(i), h2(i) and h3(i) implicitly form the
quadratics hi(y), we run BGW degree reduction on those quadratics. More specifi-
cally, Pi,j runs the BGW protocol with Pi,j′ for j′ = 1, 2, 3. This gives her a share
hi(j) on a new random linear polynomial hi(y). Furthermore, it is straightforward to
show that hi(0) = h(0) as defined above. As illustrated in Figure 5, this completes
the degree reduction process.
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Figure 3: The multiplied secret sharing of s1 × s2

We stress that degree reduction is done backwards, with the top sharing being degree
reduced first followed by the second sharing.

4 Many Levels

In our protocol, we extend the logic of the two-level example as described below.

Notation Let n = 3d be the number of parties. Each party is labeled by a vector
i ∈ {1, 2, 3}d. Let i[j, k] denote the jth through kth elements of i. If j > k, then let i[j, k]
denote the empty vector.

A secret is initially shared on a tree of polynomials illustrated below, where the invariant

is that f
(0)
i[1,`](0) = f

(0)
i[1,`−1](`), and that party i holds the value f

(0)
i[1,d−1](i[d]).
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Figure 4: Sharing structure after the first step of degree reduction.
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Figure 5: Sharing structure after the second step of degree reduction.
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f (0)(x1)

f
(0)
1 (x2)

f
(0)
11 (x3)

...

f
(0)
12 (x3) f

(0)
13 (x3)

f
(0)
2 (x2)

f
(0)
21 (x3) f

(0)
22 (x3)

. . . f
(0)

i[1,d−1](xd) . . .

f
(0)
23 (x3)

f
(0)
3 (x2)

f
(0)
31 (x3) f

(0)
32 (x3) f

(0)
33 (x3)

...

The Protocol We focus our discussion on the degree reduction protocol, sharing, reconstruction, and
addition naturally extend from the two level case. The degree reduction protocol proceeds in d rounds. We
denote values specific to round r with the superscript (r). So, for example, in round r, party i is a member
of quorum Q(r)(i) = {parties î s.t. î\ î[r] = i\ i[r]}. Denote the secret that party i holds in round 0 (before

the start of the protocol) as: s
(0)
i .

For rounds r = 1, . . . , d:

1. Each party i chooses a new degree 1 polynomial f
(r)

i[r,d],i[1,r−1], such that

f
(r)

i[r,d],i[1,r−1](0) = s
(r−1)
i (1)

2. Next, for each party î in Q(r)(i), Party i evaluates f
(r)

i[r,d],i[1,r−1](̂i[r]) and sends the value to î.

3. Now, party i has the values f
(r)

j,i[r+1,d],i[1,r−1](i[r]), for j ∈ {̂i[r] s.t. î ∈ Q(r)(i)}.
He computes:

f
(r)

i[r+1,d],i[1,r−1](i[r]) =

3∑
j=1

`j(0)f
(r)

j,i[r+1,d],i[1,r−1](i[r]) (2)

4. Finally, party i sets s
(r)
i = f

(r)

i[r+1,d],i[1,r−1](i[r]).

At the end of the degree reduction protocol, the final share of party i is s
(d)
i .

4.1 The Polynomials

Each polynomial f
(r)

i[r+1,d],i[1,r−1](xr) is freshly generated in step r of the degree reduction protocol, but its
zero is on a polynomial that is the linear combination of three polynomials from round r − 1. with new,
random coefficients, but notice that if we define:

f
(r)

i[r+1,d],i[1,r−2](xr−1) =

3∑
j=1

`j(0)f
(r−1)

j,i[r+1,d],i[1,r−2](xr−1)

we can show that

f
(r)

i[r+1,d],i[1,r−1](0) = f
(r)

i[r+1,d],i[1,r−2](i[r − 1])
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The algebra is:

f
(r)

i[r+1,d],i[1,r−1](0) =

3∑
k=1

`k(0)f
(r)

i[r+1,d],i[1,r−1](k)

=

3∑
k=1

`k(0)

3∑
j=1

`j(0)f
(r)

j,i[r+1,d],i[1,r−1](k) as defined in Eq (2)

=

3∑
j=1

`j(0)

3∑
k=1

`k(0)f
(r)

j,i[r+1,d],i[1,r−1](k)

=

3∑
j=1

`j(0)f
(r)

j,i[r+1,d],i[1,r−1](0) by the definition of interpolation

=

3∑
j=1

`j(0)f
(r−1)

j,i[r+1,d],i[1,r−2](i[r − 1]) as defined in Eq (1)

= f
(r)

i[r+1,d],i[1,r−2](i[r − 1])

In general, this relationship between rounds (level ` polynomials in round r− 1 combine to make level `− 1
polynomials in round r) holds throughout the degree reduction protocol. The sharing structure for each
round is described below.

Round 0 Round 1 Round 2 . . . Round r . . . Round d− 1 Round d

f
(0)

i[1,0](x1) f
(1)

i[2,1](x2) f
(2)

i[3,2](x3) . . . f
(r)

i[r+1,r](xr+1) . . . f
(d−1)

i[d,d−1](xd) f
(d)

i[1,0](x1)

f
(0)

i[1,1](x2) f
(1)

i[2,2](x3) f
(d−1)

i[d,d] (x1) f
(d)

i[1,1](x2)

f
(0)

i[1,2](x3)
... f

(d−1)

i[d],i[1](x2)

f
(r)

i[r+1,d−1](xd)

. .
.

f
(r)

i[r+1,d](x1) . .
.

...
...

...
...

...
...

f
(r)

i[r+1,d],i[1,`](x`+1)

f
(2)

i[3,d−1](xd) f
(d)

i[1,d−3](xd−2)

f
(1)

i[2,d−1](xd) f
(2)

i[3,d](x1)
... f

(d−1)

i[d],i[1,d−3](xd−2) f
(d)

i[1,d−2](xd−1)

f
(0)

i[1,d−1](xd) f
(1)

i[2,d](x1) f
(2)

i[3,d],i[1,1](x2) . . . f
(r)

i[r+1,d],i[1,r−1](xr) . . . f
(d−1)

i[d],i[1,d−2](xd−1) f
(d)

i[1,d−1](xd)
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5 When does A win?

The question we are trying to answer is: If an adversary A chooses a random subset of the parties to
corrupt (such that this set of parties is a constant fraction of n) what is the probability that he recovers
the secret?

Note that if it we were just talking about leveled secret sharing, and not about our complicated degree
reduction protocol, this would be straightforward to analyze.

Analyzing the initial sharing Suppose all A has seen is a fresh leveled sharing of one secret.
Instead of having A corrupt exactly 1

6
of the players, it suffices to analyze the game where A corrupts each

party independently with probability 1
3
. Then, with overwhelming probability, by the Chernoff bound,

he corrupts at least 1
6

of the players, meaning his probability of winning in this game is better than his
probability in winning in the game where he corrupts exactly 1

6
of the players. Thus, if we can show he

still has an exponentially small probability of winning in this game, we are done.

In this game, A recovers fi[1,d−1](0) if he knows at least two of fi[1,d−1](1) fi[1,d−1](2) and fi[1,d−1](3). In
general, he recovers fi[1,`](0) if he has recovered at least two of fi[1,`](1), fi[1,`](2), and fi[1,`](3). Recovering
the secret just means recovering f(0).

In this scenario, A’s probability of recovering a fi[1,d−1](0) is ≤ 1
3

2
. In general, letting p` denote his

probability of recovering a level ` zero, we have that p` ≤ p2`+1. So, p0 ≤ 1
3

2d

= θ( 1
2n

).

5.1 Learning from Degree Reduction

The problem is that A may use information from multiple rounds of the degree reduction protocol to learn
more than they could know in any one round. For simplicity of analysis, suppose that we had parties
engaging in a degree reduction protocol on a fresh leveled sharing (degree 1 in each dimension). Clearly
the adversary learns at least as much in this setting as he would in the setting where the degree reduction
protocol was run on a degree-2 leveled sharing. Below, we illustrate the first step of the degree reduction
protocol and demonstrate why even though A cannot recover the secret on a fresh sharing, he can after the
degree reduction protocol.

Let’s say we have 9 parties. There is a polynomial f (0)(x) such that f (0)(0) = secret, and three polynomials

f
(0)
i (y) such that f

(0)
i (0) = f (0)(i). Party (i, j) holds the share f

(0)
i (j). Suppose the adversary, A controls

the parties IA = {(1, 1), (2, 1), (1, 2), (3, 3)} .
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Before degree reduction (round 0) because (1, 1) and (1, 2) both have shares on f
(0)
1 (y), A can learn

f
(0)
1 (0) = f (0)(1) (and also the share held by (1, 3) ).
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What A Learns about Round 1 in Round 1:
Shares owned by parties in IA

Shares inferred from round 1 info

In step 1 of degree reduction because (1, 1) and (2, 1) lie on a line (call it f
(1)
1 (x)), A can recover f

(1)
1 (0) .

Because (3, 1) shares its value from round 0 with a majority-bad quorum, A also learns f
(1)
1 (3) and

f
(0)
3 (1) . As we shall see, however, just knowing f

(1)
1 (0) is enough for A to calculate f

(0)
3 (1) directly.
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(a) Back in round 0, there was an implicit degree-2 polynomial, call it g
(0)
1 (x) , defined by the points

f
(0)
1 (1), f

(0)
2 (1), f

(0)
3 (1), and its zero is the same as f

(1)
1 (0) . So, in fact, A knows g

(0)
1 (0) . Since

it also knows f
(0)
1 (1) = g

(0)
1 (2) and f

(0)
2 (1) = g

(0)
1 (2) , it now has three points on g

(0)
1 (x), and can

interpolate to learn g
(0)
1 (3) = f

(0)
3 (1) .

(b) OnceA has recovered f
(0)
3 (1) , since it already knows f

(0)
3 (3) , it can recover f

(0)
3 (2) and f

(0)
3 (0) = f (0)(3) .

(c) And finally, now that A has f (0)(3) and f (0)(1) , it can recover f (0)(2) and f (0)(0) = the secret.

To summarize the issue, as we degree reduce this creates more “directions” that have low degree polynomials
and allow the adversary to learn more shares than allowed by the initial sharing. The question we have
is if for large enough n and d, the adversary will still be able to recover secrets with any noticeable
probability.

6 Viewing this as a matrix problem.

It seems the cleanest way to understand this is as a matrix problem. Given n = 3d parties, each labeled by
a vector i ∈ {1, 2, 3}d, a d-leveled sharing of a secret s among 3d parties consists of

∑d−1
j=0 3j polynomials

over Zq:

• f(x1) = ax1 + s

• fi[1](x2) = ai[1]x2 + f(i[1])

• fi[1,2](x3) = ai[1,2]x3 + fi[1](i[2])

•
...

• fi[1,d−1](xd) = ai[1,d−1]xd + fi[1,d−2](i[d− 1])
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We denote the share party i holds as 〈s〉i. Its value is fi[1,d−1](i[d]).

In the above, each a coefficient is chosen uniformly at random from Zq. In some sense, the randomness from
these a coefficients “hides” the value of s, our secret. Indeed, the share held by a party i can be written as
a linear combination of the random a coefficients and the secret:

〈s〉i = a · i[1] + ai[1] · i[2] + ai[1,2] · i[3] + . . .+ ai[1,d−1] · i[d]

So, for example, setting d = 3, we have a system of linear equations, as illustrated in Figure 6. We’ve
highlighted a random 1

3
of the rows, representing the information an adversary would know if he controlled

the parties corresponding to those rows.

(In this example: QA = {P111, P112, P131, P132, P212, P223, P231, P312, P332})

In Figure 7, we consider just the matrix of rows the adversary controls. We’ve highlighted in blue the vari-
ables that are actually constrained by the information the adversary has, together with the corresponding
columns.

Now, recovering s reduces to simply solving for s in the above system of linear equations. Given only the
information corresponding to the blue submatrix, an adversary A can recover s if and only if it is of full
rank. It is easy to see that the above submatrix has 12 columns, but only 9 rows, so it cannot possibly be
of rank 12. The issue is, the adversary gets additional information after degree reduction.
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1 1 1 0 0 1 0 0 0 0 0 0 0 0

1 1 1 0 0 2 0 0 0 0 0 0 0 0

1 1 1 0 0 3 0 0 0 0 0 0 0 0

1 1 2 0 0 0 1 0 0 0 0 0 0 0

1 1 2 0 0 0 2 0 0 0 0 0 0 0

1 1 2 0 0 0 3 0 0 0 0 0 0 0

1 1 3 0 0 0 0 1 0 0 0 0 0 0

1 1 3 0 0 0 0 2 0 0 0 0 0 0

1 1 3 0 0 0 0 3 0 0 0 0 0 0

1 2 0 1 0 0 0 0 1 0 0 0 0 0

1 2 0 1 0 0 0 0 2 0 0 0 0 0

1 2 0 1 0 0 0 0 3 0 0 0 0 0

1 2 0 2 0 0 0 0 0 1 0 0 0 0

1 2 0 2 0 0 0 0 0 2 0 0 0 0

1 2 0 2 0 0 0 0 0 3 0 0 0 0

1 2 0 3 0 0 0 0 0 0 1 0 0 0

1 2 0 3 0 0 0 0 0 0 2 0 0 0

1 2 0 3 0 0 0 0 0 0 3 0 0 0

1 3 0 0 1 0 0 0 0 0 0 1 0 0

1 3 0 0 1 0 0 0 0 0 0 2 0 0

1 3 0 0 1 0 0 0 0 0 0 3 0 0

1 3 0 0 2 0 0 0 0 0 0 0 1 0

1 3 0 0 2 0 0 0 0 0 0 0 2 0

1 3 0 0 2 0 0 0 0 0 0 0 3 0

1 3 0 0 3 0 0 0 0 0 0 0 0 1

1 3 0 0 3 0 0 0 0 0 0 0 0 2

1 3 0 0 3 0 0 0 0 0 0 0 0 3
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a3
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a12

a13
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a22

a23

a31

a32

a33





=

〈s〉111
〈s〉112
〈s〉113
〈s〉121
〈s〉122
〈s〉123
〈s〉131
〈s〉132
〈s〉133
〈s〉211
〈s〉212
〈s〉213
〈s〉221
〈s〉222
〈s〉223
〈s〉231
〈s〉232
〈s〉233
〈s〉311
〈s〉312
〈s〉313
〈s〉321
〈s〉322
〈s〉323
〈s〉331
〈s〉332
〈s〉333




Figure 6: System of Linear Equations in the Original Sharing
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1 1 1 0 0 1 0 0 0 0 0 0 0 0

1 1 1 0 0 2 0 0 0 0 0 0 0 0

1 1 3 0 0 0 0 1 0 0 0 0 0 0

1 1 3 0 0 0 0 2 0 0 0 0 0 0

1 2 0 1 0 0 0 0 2 0 0 0 0 0

1 2 0 2 0 0 0 0 0 3 0 0 0 0

1 2 0 3 0 0 0 0 0 0 1 0 0 0

1 3 0 0 1 0 0 0 0 0 0 2 0 0

1 3 0 0 3 0 0 0 0 0 0 0 0 2





s

a

a1

a2

a3

a11

a12

a13

a21

a22

a23

a31

a32

a33





=

〈s〉111
〈s〉112
〈s〉131
〈s〉132
〈s〉212
〈s〉223
〈s〉231
〈s〉312
〈s〉332





Figure 7: What the Adversary Knows in Round 0
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6.1 Multiplication/Degree Reduction

Recall that after the first round of degree reduction, the parties hold shares on polynomials:

• f (1)(x2) = a(1)x2 + s

• f
(1)

i[2,2](x3) = a
(1)

i[2,2]x2 + f(i[1])

•
...

• f
(1)

i[2,d−1](xd) = a
(1)

i[2,d−1]xd + fi[2,d−2](i[d− 1])

• f
(1)

i[2,d](x1) = a
(1)

i[2,d]x1 + fi[2,d−1](i[d])

The coefficients a
(1)

i[2,d] are chosen uniformly at random, but the “higher level” coefficients are linear combi-

nations of those from the previous round. For example, the coefficients a
(1)

i[2,d−1] =
∑3

j=1 `j(0)aj,i[2,d−1]. So,

in the 3 level case, when going from “round 0” (before degree reduction has started) to round 1 (after the
1st step of degree reduction), the relationships between variables can be described by a series of 4 “linker
rows” shown in Figure 8.

Also, notice that in round 1, party i now holds the share f
(1)

i[2,d](i[i]) So in our running example, as illustrated

in Figure 9, the sharesA knows are: {〈s〉(1)111, 〈s〉
(1)
121, 〈s〉

(1)
311, 〈s〉

(1)
321, 〈s〉

(1)
122, 〈s〉

(1)
232, 〈s〉

(1)
312, 〈s〉

(1)
123, 〈s〉

(1)
323}.

In essence, the adversary gets to see a different blue submatrix each round, and furthermore, has access to
“linker rows” (information relating one round of degree reduction to the next). If the adversary can find
any full rank submatrix among all of this information, he recovers s.

Let Rr be the matrix corresponding to the shares that A learns during round r of degree reduction. Note
that if the adversary corrupts 1

3
of the parties, then each Rr has exactly 1

3
n = 3d−1 rows. Also, not counting

the variable s, which appears in Rr for all r, there are
∑d−1

i=1 3i new variables per round, so each Rr has∑d−1
i=1 3i columns, of which some number z ≥ 0 are all-zeroes. Let Rall be the matrix consisting of every

Rr for r = 0, . . . , d.

Let Lr,r+1 be the matrix corresponding to the linker rows between rounds r and r + 1. Note that there
are

∑d−2
i=0 3i linker rows between every two rounds. Similarly, let Lall be the matrix consisting of all linker

rows. Figure 11 is a visualization of Rall and Figure 12 is a visualization of Lall.

Now, the probability that A recovers the secret is simply the probability that there exists R′, a subset of
the rows of Rall and L′, a subset of the rows of Lall such that, letting A = R′ ∪ L′, the rank of A is equal
to the number of non-zero columns of A.

How do we calculate this probability? It is unclear to us, as d grows, whether it increases or decreases.
How do we even find R′? It seems that especially for large d, R′ may include strict subsets of the rows of
Rr for each r. For example, in our 3-level example from before, if we removed the 5th row of R1, we would
decrease the rank by 1, but we would decrease the number of non-zero columns by 2. So that’s where we’re
stuck. We’d love help and ideas from the community!
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Figure 8: Linking Round 0 to Round 1
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Figure 9: What A learns from Round 1
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Figure 10: What A learns from Round 2
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