
Ratcheted Steganography

Using Generative AI
Fritz Hain, Britta Hale, and Richard Thompson

Forward Secrecy and Post-Compromise Security

Forward Secrecy (FS): Previous states remain secure

even if the current state of a communicating party is

compromised.

Post-Compromise Security (PCS): Self-healing

property, assuming adversarial compromise of the

secret state of a party, secrecy of future states can be

restored under certain conditions.

Confidentiality and Covertness

• Confidentiality: An adversary knows something is being said but does not know what it is.

• Covertness: An adversary does not know that private conversation is even happening.

Different uses:

Steganography – covert

Encrypt – confidential

Forward Covertness and Post-Compromise Covertness

Forward Covertness (FC): If the existence of a

steganographic message is detected or its embedding

method becomes known, the existence of an embedded

message in previously sent covers remains undetectable.

Post-Compromise Covertness (PCC): Self-healing

property, if a current embedded message is detected or

its embedding algorithm becomes known, future

message covertness can be restored

Signal Protocol Overview

Key Derivation Function (KDF) – One
way, deterministic function, derives new
keys.

Double Ratchet

o Symmetric Key

o Diffie Hellman (DH)

Definitions

𝑺𝒕𝒆𝒈𝒐-𝒌𝒆𝒚: A set of machine learning model

attributes held secret by the sender and receiver

which define the model.

𝑺𝒕𝒆𝒈𝒐-𝒌𝒆𝒚 𝑫𝒆𝒓𝒊𝒗𝒂𝒕𝒊𝒐𝒏 𝑴𝒆𝒄𝒉𝒂𝒏𝒊𝒔𝒎 (𝑺𝑲𝑫𝑴):

a deterministic, one-way algorithm that takes as

input a 𝑠𝑡𝑒𝑔𝑜-𝑘𝑒𝑦 and outputs a new 𝑠𝑡𝑒𝑔𝑜-

𝑘𝑒𝑦.

General Ratcheted Steganography Model with Machine Learning

Machine Learning Steganography

Three neural networks:

• Encoder

• Decoder

• Adversary

Minimize:

• Image Distortion

• Message Distortion

• Detectability

Definitions

Bit Error Rate (𝑩𝑬𝑹): Measures the accuracy

of a decoder in a model. The total decoding

errors divided by the total encoded bits. We

have that 𝐵𝐸𝑅 = 𝑛𝑒/𝑛𝑏.

Fully trained model: A model is fully trained

if a decoder 𝑀𝑜𝑑𝑒𝑙𝐾
𝑑𝑒𝑐 will extract a message

𝑚𝑠𝑔 with a 𝐵𝐸𝑅 < .05.

Model independency: 𝑀𝑜𝑑𝑒𝑙𝐾𝑖

𝑒𝑛𝑐 is said to be

independent of model 𝑀𝑜𝑑𝑒𝑙𝐾𝑗

𝑒𝑛𝑐 if, for

𝑀𝑜𝑑𝑒𝑙𝐾𝑗

𝑑𝑒𝑐(𝑠𝑡𝑥𝑡𝑖), we have average 𝐵𝐸𝑅 > .45.

𝐵𝐸𝑅 =
𝑛𝑒

𝑛𝑏

𝐵𝐸𝑅 < .05

𝐵𝐸𝑅 > .45

Randomizer Ratchet - Construction

HiDDeN Model: Generative steganography

framework created by Zhu et al*, consisting of

an encoder 𝑀𝑜𝑑𝑒𝑙𝑒𝑛𝑐 and decoder 𝑀𝑜𝑑𝑒𝑙𝑑𝑒𝑐

Randomizer Ratchet 𝑺𝒕𝒆𝒈𝒐-𝒌𝒆𝒚: The set of

weights 𝑤 that feed into the output layer of

the encoder 𝑀𝑜𝑑𝑒𝑙𝐾
𝑒𝑛𝑐 and decoder 𝑀𝑜𝑑𝑒𝑙𝐾

𝑑𝑒𝑐

neural networks.

Randomizer Ratchet 𝑺𝑲𝑫𝑴: Select new initial

weights randomly within a margin of the

weight average 𝑤𝑖 of weights in 𝑠𝑡𝑒𝑔𝑜-𝑘𝑒𝑦𝑖 .

* Zhu, J., Kaplan, R., Johnson, J., Fei-Fei, L.: Hidden: Hiding Data With Deep Networks. In:

Proceedings of the European Conference on Computer Vision (ECCV). pp. 657–672 (2018)

𝑆𝑡𝑒𝑔𝑜-𝑘𝑒𝑦

Randomizer Ratchet - Construction

1. Begin with trained model, 𝑀𝑜𝑑𝑒𝑙𝐾𝑖
.

2. Permanently set all weights in 𝑀𝑜𝑑𝑒𝑙𝐾𝑖

𝑒𝑛𝑐 and

𝑀𝑜𝑑𝑒𝑙𝐾𝑖

𝑑𝑒𝑐 as constant and immutable, except for

the 𝑠𝑡𝑒𝑔𝑜-𝑘𝑒𝑦 weights.

3. Pass 𝑠𝑡𝑒𝑔𝑜-𝑘𝑒𝑦𝑖 through the Randomizer 𝑆𝐾𝐷𝑀
to obtain new initial weights.

4. Perform additional training with on 𝑀𝑜𝑑𝑒𝑙𝐾𝑖
with

new weights, modifying only weights that feed

into the output layer to obtain 𝑀𝑜𝑑𝑒𝑙𝐾𝑖+1
.

F(𝑀𝑜𝑑𝑒𝑙𝑖 , 𝑆𝐾𝐷𝑀(𝑠𝑡𝑒𝑔𝑜-𝑘𝑒𝑦𝑖)) → 𝑀𝑜𝑑𝑒𝑙(𝑖+1)
𝑆𝑡𝑒𝑔𝑜-𝑘𝑒𝑦

Randomizer Ratchet - Experiments

Experiment Description Observation

1.1 Ratcheting

Feasibility

Apply a Randomizer 𝑆𝐾𝐷𝑀(𝑠𝑡𝑒𝑔𝑜-𝑘𝑒𝑦) to a

fully trained model

Observe if shifted out of model, i.e.,

𝐵𝐸𝑅 > .45

1.2 Model

Independence

Apply a Randomizer Ratchet to the same

single base model 100 times:

F(𝑀𝑜𝑑𝑒𝑙0, 𝑆𝐾𝐷𝑀(𝑠𝑡𝑒𝑔𝑜-𝑘𝑒𝑦0)) → 𝑀𝑜𝑑𝑒𝑙1

Measure model independence, i.e.

Using 𝑀𝑜𝑑𝑒𝑙𝐾𝑖

𝑒𝑛𝑐 and 𝑀𝑜𝑑𝑒𝑙𝐾𝑗

𝑑𝑒𝑐, we

have an average 𝐵𝐸𝑅 > .45

1.3 Ratcheting

Limits

Sequentially apply a Randomizer Ratchet:

F(𝑀𝑜𝑑𝑒𝑙𝑖 , 𝑆𝐾𝐷𝑀(𝑠𝑡𝑒𝑔𝑜-𝑘𝑒𝑦𝑖)) → 𝑀𝑜𝑑𝑒𝑙𝑖+1

Observe 𝐵𝐸𝑅 decay if any, i.e. if the

△ 𝐵𝐸𝑅 > 0

Randomizer Ratchet – Ratcheting Feasibility (1.1)

Apply a Randomizer 𝑆𝐾𝐷𝑀(𝑠𝑡𝑒𝑔𝑜-𝑘𝑒𝑦)

to a fully trained model

Randomizer Ratchet – Ratcheted Model Independence (1.2)

Apply a Randomizer Ratchet to the same

single base model 100 times.

F(𝑀𝑜𝑑𝑒𝑙0, 𝑆𝐾𝐷𝑀(𝑠𝑡𝑒𝑔𝑜-𝑘𝑒𝑦0)) → 𝑀𝑜𝑑𝑒𝑙1

repeat for 100 tests – stego-key

generation is non-deterministic

Randomizer Ratchet – Ratcheting Limits (1.3)

Sequentially apply a Randomizer Ratchet.

F(𝑀𝑜𝑑𝑒𝑙𝑖 , 𝑆𝐾𝐷𝑀(𝑠𝑡𝑒𝑔𝑜-𝑘𝑒𝑦𝑖)) → 𝑀𝑜𝑑𝑒𝑙𝑖+1

Steganalysis - Experiments

Experiment Description Observation

2.1 Bit error

distribution

baseline

Decode 1000 random messages (𝑚𝑠𝑔 ∈ {0,1}30) on

all three decoders (𝑀𝑜𝑑𝑒𝑙𝑖
𝑑𝑒𝑐), repeated three times.

Sum of all decoding errors at each

bit position,

𝐵𝑖𝑡𝐸𝑟𝑟𝑜𝑟𝑠𝑙 ⊥, 𝑀𝑜𝑑𝑒𝑙𝑖
𝑑𝑒𝑐 .

2.2 Bit error

distribution

actual

For all three Encoders, encode 1000 random

messages (𝑚𝑠𝑔 ∈ {0,1}30) with 𝑀𝑜𝑑𝑒𝑙𝑖
𝑒𝑛𝑐 and then

decode with all three decoders (𝑀𝑜𝑑𝑒𝑙𝑗
𝑑𝑒𝑐).

Sum of all decoding errors at each

bit position,

𝐵𝑖𝑡𝐸𝑟𝑟𝑜𝑟𝑠𝑙 𝑀𝑜𝑑𝑒𝑙𝑖
𝑒𝑛𝑐, 𝑀𝑜𝑑𝑒𝑙𝑗

𝑑𝑒𝑐 .

Evaluation Metric - 𝑩𝒊𝒕𝑬𝒓𝒓𝒐𝒓𝒔𝒍: The number of decoding errors at bit

position 𝑙 is denoted by 𝐵𝑖𝑡𝐸𝑟𝑟𝑜𝑟𝑠𝑙 𝑀𝑜𝑑𝑒𝑙𝑖
𝑒𝑛𝑐 , 𝑀𝑜𝑑𝑒𝑙𝑗

𝑑𝑒𝑐 , where the bit

string was encoded with 𝑀𝑜𝑑𝑒𝑙𝑖
𝑒𝑛𝑐 and decoded with 𝑀𝑜𝑑𝑒𝑙𝑗

𝑑𝑒𝑐.

Purpose: Discover if certain bit positions are more likely to have errors.

Setup: Fully train three separate models.

Steganalysis – Bit error distribution baseline (2.1)

Bit error distribution baseline across all 𝑙:

𝑠𝑎𝑚𝑝𝑙𝑒 = 1000

𝑁𝑢𝑚𝐸𝑟𝑟𝑜𝑟𝑠 𝑎𝑡 𝑏𝑖𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑙 =

𝐵𝑖𝑡𝐸𝑟𝑟𝑜𝑟𝑠𝑙 ⊥, 𝑀𝑜𝑑𝑒𝑙0
𝑑𝑒𝑐, 𝑠𝑎𝑚𝑝𝑙𝑒 1

 +

𝐵𝑖𝑡𝐸𝑟𝑟𝑜𝑟𝑠𝑙 ⊥, 𝑀𝑜𝑑𝑒𝑙1
𝑑𝑒𝑐, 𝑠𝑎𝑚𝑝𝑙𝑒 1

 +

𝐵𝑖𝑡𝐸𝑟𝑟𝑜𝑟𝑠𝑙 ⊥, 𝑀𝑜𝑑𝑒𝑙2
𝑑𝑒𝑐, 𝑠𝑎𝑚𝑝𝑙𝑒 1

 +

𝐵𝑖𝑡𝐸𝑟𝑟𝑜𝑟𝑠𝑙 ⊥, 𝑀𝑜𝑑𝑒𝑙0
𝑑𝑒𝑐, 𝑠𝑎𝑚𝑝𝑙𝑒 2

 +

𝐵𝑖𝑡𝐸𝑟𝑟𝑜𝑟𝑠𝑙 ⊥, 𝑀𝑜𝑑𝑒𝑙1
𝑑𝑒𝑐, 𝑠𝑎𝑚𝑝𝑙𝑒 2

 +

𝐵𝑖𝑡𝐸𝑟𝑟𝑜𝑟𝑠𝑙 ⊥, 𝑀𝑜𝑑𝑒𝑙2
𝑑𝑒𝑐, 𝑠𝑎𝑚𝑝𝑙𝑒 2

 +

𝐵𝑖𝑡𝐸𝑟𝑟𝑜𝑟𝑠𝑙 ⊥, 𝑀𝑜𝑑𝑒𝑙0
𝑑𝑒𝑐, 𝑠𝑎𝑚𝑝𝑙𝑒 3

 +

𝐵𝑖𝑡𝐸𝑟𝑟𝑜𝑟𝑠𝑙 ⊥, 𝑀𝑜𝑑𝑒𝑙1
𝑑𝑒𝑐, 𝑠𝑎𝑚𝑝𝑙𝑒 3

 +

𝐵𝑖𝑡𝐸𝑟𝑟𝑜𝑟𝑠𝑙 ⊥, 𝑀𝑜𝑑𝑒𝑙2
𝑑𝑒𝑐, 𝑠𝑎𝑚𝑝𝑙𝑒 3

Steganalysis – Bit error distribution actual (2.2)

Actual bit error distribution across all 𝑙:

𝑁𝑢𝑚𝐸𝑟𝑟𝑜𝑟𝑠 𝑎𝑡 𝑏𝑖𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑙 =

𝐵𝑖𝑡𝐸𝑟𝑟𝑜𝑟𝑠𝑙 𝑀𝑜𝑑𝑒𝑙1
𝑒𝑛𝑐 , 𝑀𝑜𝑑𝑒𝑙0

𝑑𝑒𝑐 +

𝐵𝑖𝑡𝐸𝑟𝑟𝑜𝑟𝑠𝑙 𝑀𝑜𝑑𝑒𝑙1
𝑒𝑛𝑐 , 𝑀𝑜𝑑𝑒𝑙1

𝑑𝑒𝑐 +

𝐵𝑖𝑡𝐸𝑟𝑟𝑜𝑟𝑠𝑙 𝑀𝑜𝑑𝑒𝑙1
𝑒𝑛𝑐 , 𝑀𝑜𝑑𝑒𝑙2

𝑑𝑒𝑐 +

𝐵𝑖𝑡𝐸𝑟𝑟𝑜𝑟𝑠𝑙 𝑀𝑜𝑑𝑒𝑙0
𝑒𝑛𝑐 , 𝑀𝑜𝑑𝑒𝑙0

𝑑𝑒𝑐 +

𝐵𝑖𝑡𝐸𝑟𝑟𝑜𝑟𝑠𝑙 𝑀𝑜𝑑𝑒𝑙0
𝑒𝑛𝑐 , 𝑀𝑜𝑑𝑒𝑙1

𝑑𝑒𝑐 +

𝐵𝑖𝑡𝐸𝑟𝑟𝑜𝑟𝑠𝑙 𝑀𝑜𝑑𝑒𝑙0
𝑒𝑛𝑐 , 𝑀𝑜𝑑𝑒𝑙2

𝑑𝑒𝑐 +

𝐵𝑖𝑡𝐸𝑟𝑟𝑜𝑟𝑠𝑙 𝑀𝑜𝑑𝑒𝑙2
𝑒𝑛𝑐 , 𝑀𝑜𝑑𝑒𝑙0

𝑑𝑒𝑐 +

𝐵𝑖𝑡𝐸𝑟𝑟𝑜𝑟𝑠𝑙 𝑀𝑜𝑑𝑒𝑙2
𝑒𝑛𝑐 , 𝑀𝑜𝑑𝑒𝑙1

𝑑𝑒𝑐 +

𝐵𝑖𝑡𝐸𝑟𝑟𝑜𝑟𝑠𝑙 𝑀𝑜𝑑𝑒𝑙2
𝑒𝑛𝑐 , 𝑀𝑜𝑑𝑒𝑙2

𝑑𝑒𝑐

Steganalysis – Bit error distribution actual (2.2)

Actual bit error distribution across all 𝑙, showing

only corresponding encoders/decoders:

𝑁𝑢𝑚𝐸𝑟𝑟𝑜𝑟𝑠 𝑎𝑡 𝑏𝑖𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑙 =

𝐵𝑖𝑡𝐸𝑟𝑟𝑜𝑟𝑠𝑙 𝑀𝑜𝑑𝑒𝑙0
𝑒𝑛𝑐, 𝑀𝑜𝑑𝑒𝑙0

𝑑𝑒𝑐 +

𝐵𝑖𝑡𝐸𝑟𝑟𝑜𝑟𝑠𝑙 𝑀𝑜𝑑𝑒𝑙1
𝑒𝑛𝑐, 𝑀𝑜𝑑𝑒𝑙1

𝑑𝑒𝑐 +

𝐵𝑖𝑡𝐸𝑟𝑟𝑜𝑟𝑠𝑙 𝑀𝑜𝑑𝑒𝑙2
𝑒𝑛𝑐, 𝑀𝑜𝑑𝑒𝑙2

𝑑𝑒𝑐

Takeaways

• The Randomizer Ratchet was not effective:

• Ratcheted models were not independent per experiment 1.2

• Sequentially applying the ratchet resulted in 𝐵𝐸𝑅 decay per experiment 1.3

• An open question if ratcheted steganography with AI is practical.

• Cost function for training AI steganographic models should consider bit

position error.

Questions?

	Slide 1: Ratcheted Steganography Using Generative AI
	Slide 2: Forward Secrecy and Post-Compromise Security
	Slide 3: Confidentiality and Covertness
	Slide 4: Forward Covertness and Post-Compromise Covertness
	Slide 5: Signal Protocol Overview
	Slide 6: Definitions
	Slide 7: General Ratcheted Steganography Model with Machine Learning
	Slide 8: Machine Learning Steganography
	Slide 9: Definitions
	Slide 10: Randomizer Ratchet - Construction
	Slide 11: Randomizer Ratchet - Construction
	Slide 12: Randomizer Ratchet - Experiments
	Slide 13: Randomizer Ratchet – Ratcheting Feasibility (1.1)
	Slide 14: Randomizer Ratchet – Ratcheted Model Independence (1.2)
	Slide 15: Randomizer Ratchet – Ratcheting Limits (1.3)
	Slide 16: Steganalysis - Experiments
	Slide 17: Steganalysis – Bit error distribution baseline (2.1)
	Slide 18: Steganalysis – Bit error distribution actual (2.2)
	Slide 19: Steganalysis – Bit error distribution actual (2.2)
	Slide 20: Takeaways
	Slide 21: Questions?

