Ratcheted Steganography Using Generative AI

Fritz Hain, Britta Hale, and Richard Thompson

Forward Secrecy (FS): Previous states remain secure even if the current state of a communicating party is compromised.

Post-Compromise Security (PCS): Self-healing property, assuming adversarial compromise of the secret state of a party, secrecy of future states can be restored under certain conditions.

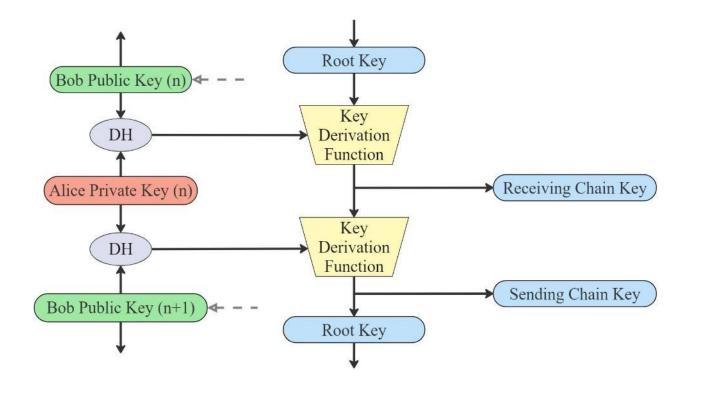
- **Confidentiality**: An adversary knows something is being said but does not know what it is.
- **Covertness**: An adversary does not know that private conversation is even happening.

Different uses: Steganography – covert Encrypt – confidential

Forward Covertness (FC): If the existence of a steganographic message is detected or its embedding method becomes known, the existence of an embedded message in previously sent covers remains undetectable.

Post-Compromise Covertness (PCC): Self-healing property, if a current embedded message is detected or its embedding algorithm becomes known, future message covertness can be restored

Signal Protocol Overview

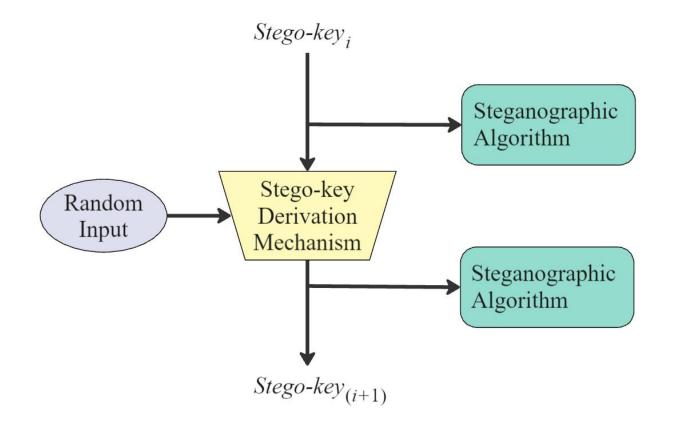


Key Derivation Function (KDF) – One way, deterministic function, derives new keys.

Double Ratchet

- Symmetric Key
- Diffie Hellman (DH)

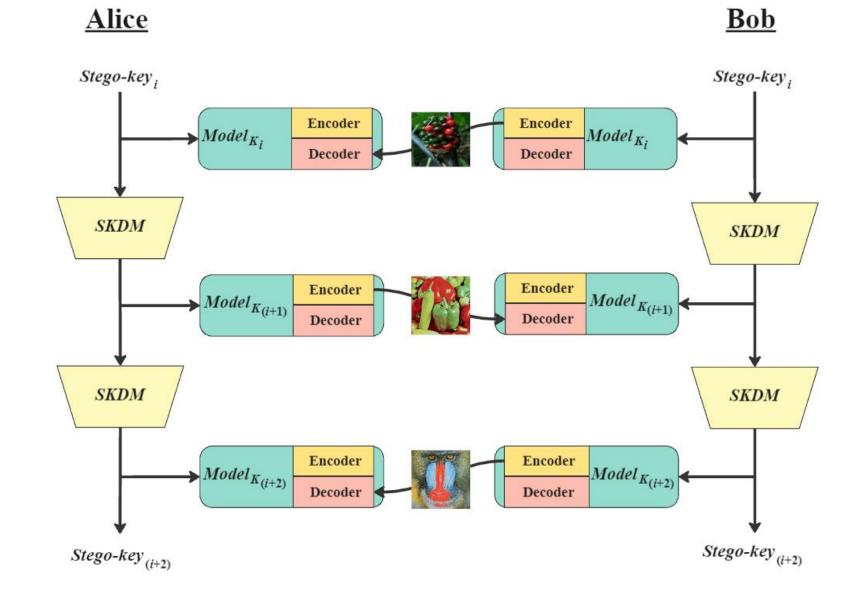
Definitions



Stego-key: A set of machine learning model attributes held secret by the sender and receiver which define the model.

Stego-key Derivation Mechanism (SKDM): a deterministic, one-way algorithm that takes as input a *stego-key* and outputs a new *stegokey*.

General Ratcheted Steganography Model with Machine Learning



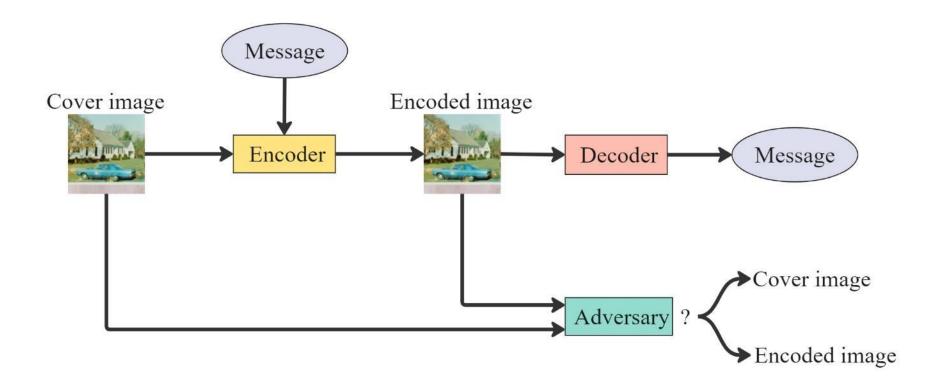
Machine Learning Steganography

Three neural networks:

- Encoder
- Decoder
- Adversary

Minimize:

- Image Distortion
- Message Distortion
- Detectability

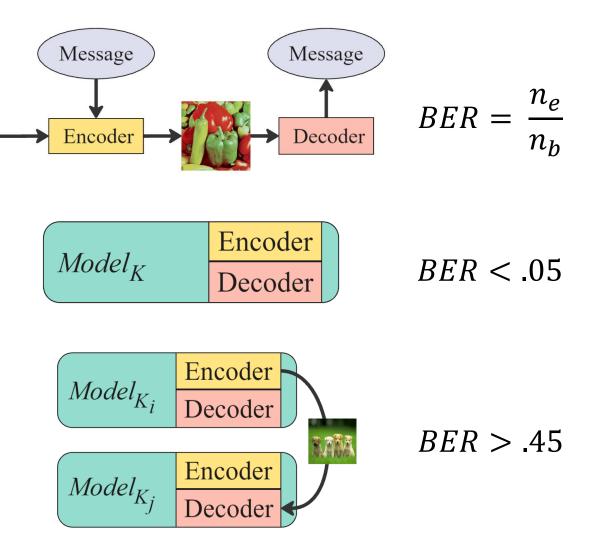


Definitions

Bit Error Rate (BER): Measures the accuracy of a decoder in a model. The total decoding errors divided by the total encoded bits. We have that $BER = n_e/n_b$.

Fully trained model: A model is fully trained if a decoder $Model_K^{dec}$ will extract a message msg with a BER < .05.

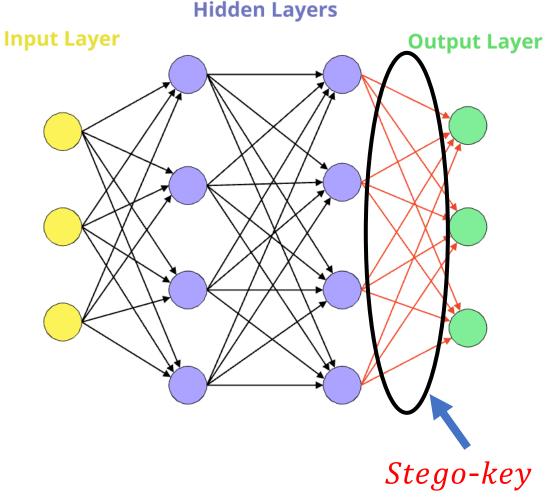
Model independency: $Model_{K_i}^{enc}$ is said to be independent of model $Model_{K_j}^{enc}$ if, for $Model_{K_j}^{dec}(stxt_i)$, we have average BER > .45.



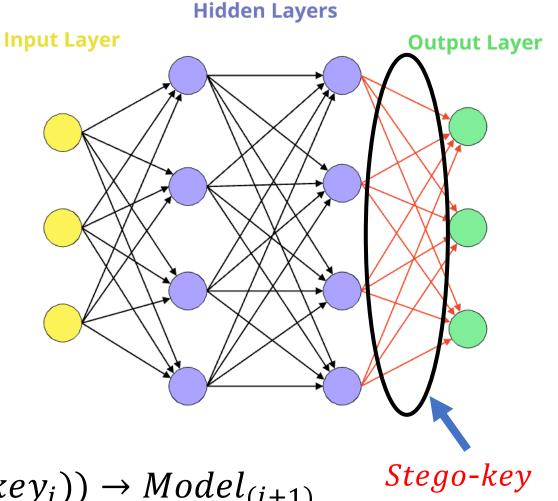
HiDDeN Model: Generative steganography framework created by Zhu et al*, consisting of an encoder *Model*^{enc} and decoder *Model*^{dec}

Randomizer Ratchet *Stego-key*: The set of weights w that feed into the output layer of the encoder $Model_{K}^{enc}$ and decoder $Model_{K}^{dec}$ neural networks.

Randomizer Ratchet *SKDM*: Select new initial weights randomly within a margin of the weight average $\overline{w_i}$ of weights in *stego-key_i*.



- 1. Begin with trained model, $Model_{K_i}$.
- 2. Permanently set all weights in $Model_{K_i}^{enc}$ and $Model_{K_i}^{dec}$ as constant and immutable, except for the *stego-key* weights.
- 3. Pass $stego-key_i$ through the Randomizer SKDM to obtain new initial weights.
- 4. Perform additional training with on $Model_{K_i}$ with new weights, modifying only weights that feed into the output layer to obtain $Model_{K_{i+1}}$.

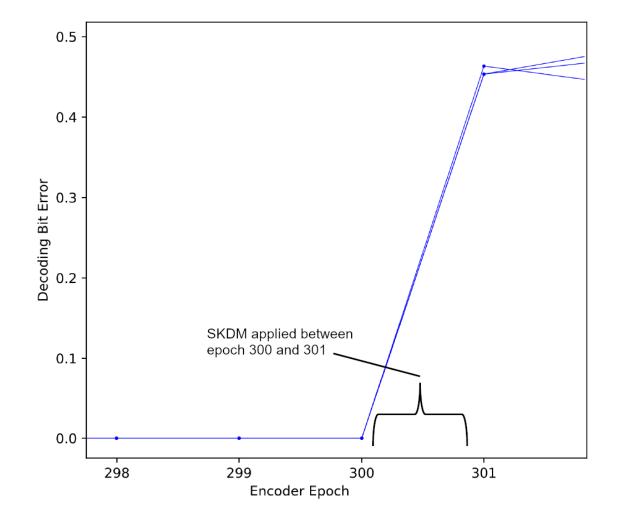


 $F(Model_i, SKDM(stego-key_i)) \rightarrow Model_{(i+1)}$

#	Experiment	Description	Observation
1.1	Ratcheting Feasibility	Apply a Randomizer <i>SKDM</i> (<i>stego-key</i>) to a fully trained model	Observe if shifted out of model, i.e., $BER > .45$
1.2	Model Independence	Apply a Randomizer Ratchet to the same single base model 100 times: $F(Model_0, SKDM(stego-key_0)) \rightarrow Model_1$	Measure model independence, i.e. Using $Model_{K_i}^{enc}$ and $Model_{K_j}^{dec}$, we have an average $BER > .45$
1.3	Ratcheting Limits	Sequentially apply a Randomizer Ratchet: $F(Model_i, SKDM(stego-key_i)) \rightarrow Model_{i+1}$	Observe <i>BER</i> decay if any, i.e. if the $\Delta BER > 0$

Randomizer Ratchet – Ratcheting Feasibility (1.1)

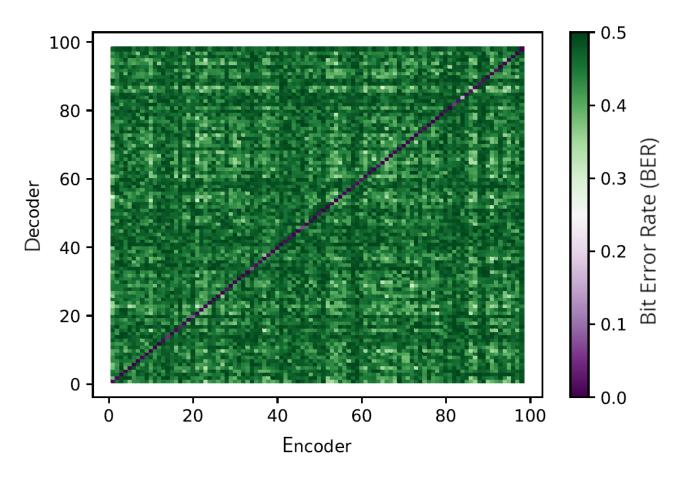
Apply a Randomizer *SKDM*(*stego-key*) to a fully trained model



Apply a Randomizer Ratchet to the same single base model 100 times.

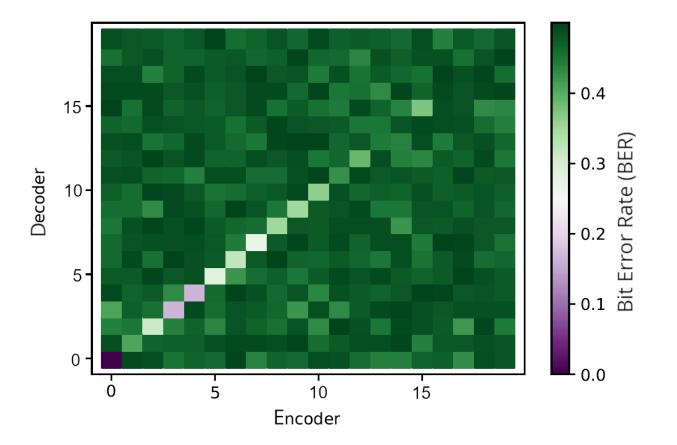
 $F(Model_0, SKDM(stego-key_0)) \rightarrow Model_1$

repeat for 100 tests – stego-key generation is non-deterministic



Sequentially apply a Randomizer Ratchet.

 $F(Model_i, SKDM(stego-key_i)) \rightarrow Model_{i+1}$



Steganalysis - Experiments

Purpose: Discover if certain bit positions are more likely to have errors.

Setup: Fully train three separate models.

Evaluation Metric - *BitErrors*_{*l*}: The number of decoding errors at bit position *l* is denoted by $BitErrors_l(Model_i^{enc}, Model_j^{dec})$, where the bit string was encoded with $Model_i^{enc}$ and decoded with $Model_j^{dec}$.

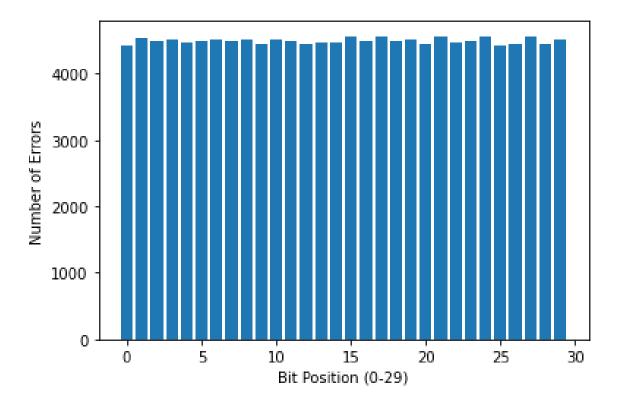
#	Experiment	Description	Observation
2.1	Bit error distribution baseline	Decode 1000 random messages ($msg \in \{0,1\}^{30}$) on all three decoders ($Model_i^{dec}$), repeated three times.	Sum of all decoding errors at each bit position, BitErrors _l (\perp , Model ^{dec} _i).
2.2	Bit error distribution actual	For all three Encoders, encode 1000 random messages ($msg \in \{0,1\}^{30}$) with $Model_i^{enc}$ and then decode with all three decoders ($Model_j^{dec}$).	Sum of all decoding errors at each bit position, BitErrors _l (Model ^{enc} , Model ^{dec}).

Bit error distribution baseline across all *l*:

|sample| = 1000

NumErrors at bit position l =

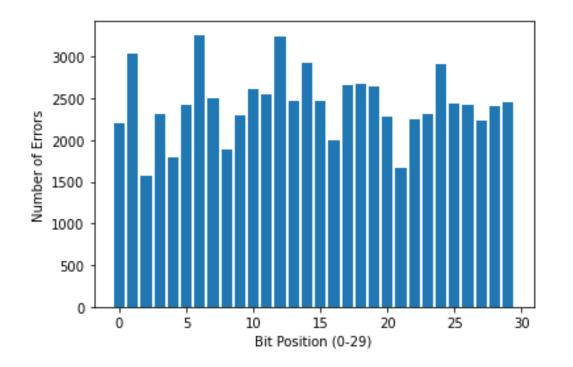
 $BitErrors_{l}(\bot, Model_{0}^{dec, sample 1}) + BitErrors_{l}(\bot, Model_{1}^{dec, sample 1}) + BitErrors_{l}(\bot, Model_{2}^{dec, sample 1}) + BitErrors_{l}(\bot, Model_{0}^{dec, sample 2}) + BitErrors_{l}(\bot, Model_{1}^{dec, sample 2}) + BitErrors_{l}(\bot, Model_{2}^{dec, sample 2}) + BitErrors_{l}(\bot, Model_{0}^{dec, sample 2}) + BitErrors_{l}(\bot, Model_{0}^{dec, sample 3}) + BitErrors_{l}(\bot, Model_{1}^{dec, sample 3}) + BitErrors_{l}(\bot, Model_{1}^{dec, sample 3}) + BitErrors_{l}(\bot, Model_{2}^{dec, sample 3}) + BitErrors_{l}(\bot, Mod$



Actual bit error distribution across all *l*:

NumErrors at bit position l =

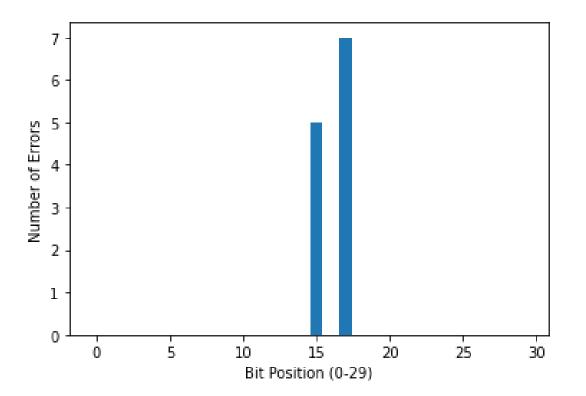
 $BitErrors_{l}(Model_{0}^{enc}, Model_{0}^{dec}) + BitErrors_{l}(Model_{0}^{enc}, Model_{1}^{dec}) + BitErrors_{l}(Model_{0}^{enc}, Model_{2}^{dec}) + BitErrors_{l}(Model_{1}^{enc}, Model_{0}^{dec}) + BitErrors_{l}(Model_{1}^{enc}, Model_{0}^{dec}) + BitErrors_{l}(Model_{1}^{enc}, Model_{1}^{dec}) + BitErrors_{l}(Model_{1}^{enc}, Model_{2}^{dec}) + BitErrors_{l}(Model_{2}^{enc}, Model_{0}^{dec}) + BitErrors_{l}(Model_{0}^{enc}, Model_{0}^{de$



Actual bit error distribution across all *l*, showing only corresponding encoders/decoders:

NumErrors at bit position l =

 $BitErrors_{l}(Model_{0}^{enc}, Model_{0}^{dec}) + BitErrors_{l}(Model_{1}^{enc}, Model_{1}^{dec}) + BitErrors_{l}(Model_{2}^{enc}, Model_{2}^{dec})$



- The Randomizer Ratchet was not effective:
 - Ratcheted models were not independent per experiment 1.2
 - Sequentially applying the ratchet resulted in *BER* decay per experiment 1.3
- An open question if ratcheted steganography with AI is practical.
- Cost function for training AI steganographic models should consider bit position error.

Questions?

