A Few Reductions Between Decisional Problems ₂ CFAIL Abstract We state three decisional problems in prime order groups and give some reductions between them. Can you find the line that's wrong? 1 The Problems Let G be a group of prime order p, generated by g. All lower case letters will represent values chosen uniformly and independently at random from \mathbb{Z}_p . **Problem 1** Given g, g^a , g^b , distinguish $T = g^{ab}$ from $T = g^r$. **Problem 2** Given q, q^{a^2} , q^b , distinguish $T = q^{a^2b}$ from $T = q^r$. **Problem 3** Given g, g^a , g^b , g^c , g^{ac} , distinguish $T = g^{ab}$ from $T = g^r$. The Reductions 2 **Theorem 1.** Given a PPT algorithm A' that achieves non-negligible advantage in Problem 1, we can 13 build a PPT algorithm A that achieves non-negligible advantage in Problem 2. 14 *Proof.* We define \mathcal{A} as follows. \mathcal{A} receives input g, g^{a^2}, g^b , and T. It samples c itself, uniformly at random from \mathbb{Z}_p . It implicitly sets $a' = a^2c$. 15 16 It can then efficiently compute $q^{a'} = (q^{a^2})^c$ and T^c . 17 It sends g, $g^{a'}$, g^b , T^c to \mathcal{A}' and copies its answer. 18 The advantage of A is negligibly close to the advantage of A. 20 **Theorem 2.** Given a PPT algorithm A' that achieves non-negligible advantage in Problem 2, we can 21 build a PPT algorithm A that achieves non-negligible advantage in Problem 1. 22 *Proof.* We define \mathcal{A} as follows. \mathcal{A} receives input g, g^a, g^b , and T. 23 It sends these inputs to A' and copies its answer. 24 When a is a square, this matches the input distribution of Problem 2. 25 The value a is square in \mathbb{Z}_p with probability at least $\frac{1}{2}$, as half of the non-zero elements of \mathbb{Z}_p are squares. The advantage of \mathcal{A} is thus at least $\frac{1}{2}$ the advantage of \mathcal{A}' , and hence non-negligible. 27 **Theorem 3.** Given a PPT algorithm \mathcal{A}' that achieves non-negligible advantage in Problem 3, we can 28 build a PPT algorithm A that achieves non-negligible advantage in Problem 1. 29 *Proof.* We define \mathcal{A} as follows. \mathcal{A} receives input g, g^a, g^b , and T. 30 It samples c itself, uniformly at random from \mathbb{Z}_p . 31 It can then efficiently compute g^c and $g^{ac} = (g^{\hat{a}})^c$. It sends $g, g^a, g^b, g^c, g^{ac}, T$ to \mathcal{A}' and copies its answer. 33 The advantage of A is identical to the advantage of A'. 34 actually 2-adr. of A- = could be negl.